Neurobiological prerequisites for an increased risk of sleep disorders in adolescents

DOI: https://doi.org/10.29296/25877305-2019-09-02
Issue: 
9
Year: 
2019

Professor I. Kelmanson, MD V.A. Almazov National Medical Research Center, Saint Petersburg Saint Petersburg State Institute of Psychology and Social Work

The paper considers possible neuropsychological prerequisites for common sleep disorders detected in adolescence. Attention is paid to the brain morphological and functional rearrangements during puberty, which are accompanied by a decline in the number of synapses and interneuronal connections. The above phenomena lead to decreased slow-wave activity on the electroencephalogram that reflects sleep pressure, a homeostatic process that causes the onset of sleep. The changes are observed in the circadian process, which are associated with decreased melatonin production during puberty, increased retinal sensitivity to light exposure during evening hours, and the longer circadian period of the sleep-wake cycle. The aforementioned contributes to an increased risk for a delayed sleep disorders. The continuing need for a teenager in 8–9-hour sleep with early awakenings on weekdays results in sleep deprivation that is accompanied by a risk for emotional and behavioral problems. The risk of sleep disorders is exacerbated by increased emotional reactivity and stress sensitivity, which are typical of adolescents, by hygiene violations, higher school workloads, and an irrationally designed school timetable. Possible approaches to reducing the risk of sleep disorders in adolescence are considered.

Keywords: 
hygiene of children and adolescents
sleep disorders
neurobiology
ontogenesis
adolescents
sleep



References: 
  1. National Sleep Foundation Sleep and Teens Task Force. Adolescent sleep needs and patterns: research report and resource guide / Washington, DC: The National Sleep Foundation, 2000.
  2. Giedd J., Snell J., Lange N. et al. Quantitative magnetic resonance imaging of human brain development: ages 4–18 // Cerebral Cortex. – 1996; 6 (4): 551–60.
  3. Zehr J., Todd B., Schulz K. et al. Dendritic pruning of the medial amygdala during pubertal development of the male Syrian hamster // J. Neurobiol. – 2006; 66 (6): 578–90. https://doi.org/10.1002/neu.20251.
  4. Rakic P., Bourgeois J.-P., Goldman-Rakic P. Synaptic development of the cerebral cortex: implications for learning, memory, and mental illness // Prog. Brain Res. – 1994; 102: 227–43.
  5. Paus T., Nawazkhan I., Leonard G. et al. Corpus callosum in adolescent offspring exposed prenatally to maternal cigarette smoking // NeuroImage. – 2008; 40 (2): 435–41. DOI: 10.1016/j.neuroimage.2007.10.066.
  6. Shaw P., Kabani N., Lerch J. et al. Neurodevelopmental trajectories of the human cerebral cortex // J. Neurosci. – 2008; 28 (14): 3586–94. DOI: 10.1523/JNEUROSCI.5309-07.2008
  7. Tamnes C., Ostby Y., Fjell A. et al. Brain maturation in adolescence and young adulthood: regional age-related changes in cortical thickness and white matter volume and microstructure // Cerebral Cortex. – 2010; 20 (3): 534–48. doi: 10.1093/cercor/bhp118.
  8. Gogtay N., Giedd J., Lusk L. et al. Dynamic mapping of human cortical development during childhood through early adulthood // Proc. Nat. Acad. Sci. USA. – 2004; 101 (21): 8174–9.
  9. Giedd J., Rapoport J.. Structural MRI of pediatric brain development: what have we learned and where are we going? // Neuron. – 2010; 67 (5): 728–34. DOI: 10.1016/j.neuron.2010.08.040.
  10. Olson I., Plotzker A., Ezzyat Y. The Enigmatic temporal pole: a review of findings on social and emotional processing // Brain. – 2007; 130 (Pt. 7): 1718–31.
  11. Sowell E., Thompson P., Tessner K. et al. Mapping continued brain growth and gray matter density reduction in dorsal frontal cortex: Inverse relationships during postadolescent brain maturation // J. Neurosci. – 2001; 21 (22): 8819–29. https://doi.org/10.1523/JNEUROSCI.21-22-08819.2001.
  12. Shaw P., Greenstein D., Lerch J. et al. Intellectual ability and cortical development in children and adolescents // Nature. – 2006; 440 (7084): 676–9.
  13. Lu L., Leonard C., Thompson P. et al. Normal developmental changes in inferior frontal gray matter are associated with improvement in phonological processing: a longitudinal MRI analysis // Cerebral Cortex. – 2007; 17 (5): 1092–9. https://doi.org/10.1093/cercor/bhl019.
  14. Sowell E., Thompson P., Toga A. Mapping changes in the human cortex throughout the span of life // Neuroscientist. – 2004; 10 (4): 372–92.
  15. Paus T., Collins D., Evans A. et al. Maturation of white matter in the human brain: a review of magnetic resonance studies // Brain Res. Bull. – 2001; 54 (3): 255–66.
  16. Strenziok M., Krueger F., Deshpande G. et al. Fronto-parietal regulation of media violence exposure in adolescents: a multi-method study // Soc. Cogn. Affect. Neurosci. – 2011; 6 (5): 537–47. DOI: 10.1093/scan/nsq079.
  17. Asato M., Terwilliger R, Woo J. et al. White matter development in adolescence: a DTI study // Cerebral Cortex. – 2010; 20 (9): 2122–31. DOI: 10.1093/cercor/bhp282.
  18. Barnea-Goraly N., Menon V., Eckert M. et al. White matter development during childhood and adolescence: a cross-sectional diffusion tensor imaging study // Cerebral Cortex. – 2005; 15 (12): 1848–54.
  19. Qiu J., Li H., Wei Y. et al. Neural mechanisms underlying the processing of Chinese and English words in a word generation task: an event-related potential study // Psychophysiology. – 2008; 45 (6): 970–6. DOI: 10.1111/j.1469-8986.2008.00703.x.
  20. Herwig U., Kaffenberger T., Jancke L. et al. Self-related awareness and emotion regulation // NeuroImage. – 2010; 50 (2): 734–41. DOI: 10.1016/j.neuroimage.2009.12.089.
  21. Ashtari M., Cervellione K., Hasan K. et al. White matter development during late adolescence in healthy males: a cross-sectional diffusion tensor imaging study // NeuroImage. – 2007; 35 (2): 501–10.
  22. Mabbott D., Rovet J., Noseworthy M. et al. The relations between white matter and declarative memory in older children and adolescents // Brain Res. – 2009; 1294: 80–90. DOI: 10.1016/j.brainres.2009.07.046.
  23. Stevens M., Skudlarski P., Pearlson G. et al. Age-related cognitive gains are mediated by the effects of white matter development on brain network integration // NeuroImage. – 2009; 48 (4): 738–46. DOI: 10.1016/j.neuroimage.2009.06.065.
  24. Luders E., Thompson P., Narr K. et al. The link between callosal thickness and intelligence in healthy children and adolescents // NeuroImage. – 2011; 54 (3): 1823–30. DOI: 10.1016/j.neuroimage.2010.09.083.
  25. Tarokh L., Carskadon M. Sleep in adolescents. In: Stickgold R, Walker MP, editors. The neuroscience of sleep / London, Boston: Academic Press/Elsevier, 2009; p. 70–7.
  26. Borbely A. A two process model of sleep regulation // Hum. neurobiol. – 1982; 1 (3): 195–204.
  27. Jenni O., van Reen E., Carskadon M. Regional differences of the sleep electroencephalogram in adolescents // J. Sleep Res. – 2005; 14 (2): 141–7. DOI: 10.1111/j.1365-2869.2005.00449.x.
  28. Taylor D., Jenni O., Acebo C. et al. Sleep tendency during extended wakefulness: insights into adolescent sleep regulation and behavior // J. Sleep Res. – 2005; 14 (3): 239–44. https://doi.org/10.1111/j.1365-2869.2005.00467.x.
  29. Jenni O., Carskadon M. Spectral analysis of the sleep electroencephalogram during adolescence // Sleep. – 2004; 27 (4): 774–83.
  30. Campbell I., Darchia N., Higgins L. et al. Adolescent changes in homeostatic regulation of EEG activity in the delta and theta frequency bands during NREM sleep // Sleep. – 2011; 34 (1): 83–91.
  31. Bergen S., Gardner C., Kendler K. Age-related changes in heritability of behavioral phenotypes over adolescence and young adulthood: a meta-analysis // Twin Res. Hum. Genet. – 2007; 10 (3): 423–33.
  32. Crowley S., Acebo C., Carskadon M. Sleep, circadian rhythms, and delayed phase in adolescence // Sleep Med. – 2007; 8 (6): 602–12.
  33. Tarokh L., Carskadon M., Rusterholz T. et al. Homeostatic sleep regulation in adolescents: Longitudinal perspectives // Sleep. – 2011; 34 (S1): A26–A.
  34. Richardson G., Tate B. Endocrine changes associated with puberty and adolescence. In: M. Carskadon, ed. Adolescent sleep patterns: biological, social, and psychological influences / Cambridge: Cambridge University Press, 2002; p. 27–39.
  35. Crowley S., Acebo C., Fallone G. et al. Estimating dim light melatonin onset (DLMO) phase in adolescents using summer or school-year sleep/wake schedules // Sleep. – 2006; 29 (12): 1632–41.
  36. Carskadon M., Labyak S., Acebo C. et al. Intrinsic circadian period of adolescent humans measured in conditions of forced desynchrony // Neurosci. Lett. – 1999; 260 (2): 129–32.
  37. McGinnis M., Lumia A., Tetel M. et al. Effects of anabolic androgenic steroids on the development and expression of running wheel activity and circadian rhythms in male rats // Physiol. Behav. – 2007; 92 (5): 1010–8. DOI: 10.1016/j.physbeh.2007.07.010.
  38. Kel'manson I.A. Ekologicheskie i kliniko-biologicheskie aspekty narushenij tsirkadiannyh ritmov son-bodrstvovanie u detej i podrostkov // Biosfera. – 2015; 7 (1): 131–45 [Kelmanson I.A. Environmental, biological, and clinical aspects of circadian sleep-wake rhythm disorders in children and adolescents // Biosfera. – 2015; 7 (1): 131–4 (in Russ.)].
  39. Carskadon M., Acebo C., Arnedt J. et al. Melatonin sensitivity to light in adolescents: preliminary results // Sleep. – 2001; 24: A190–A1.
  40. Hagenauer M., Perryman J., Lee T. et al. Adolescent changes in the homeostatic and circadian regulation of sleep // Dev. Neurosci. – 2009; 31 (4): 276–84. DOI: 10.1159/000216538.
  41. Weinert D., Eimert H., Erkert H. et al. Resynchronization of the circadian corticosterone rhythm after a light/dark shift in juvenile and adult mice // Chronobiol. Int. – 1994; 11 (4): 222–31.
  42. Roenneberg T., Kuehnle T., Pramstaller P. et al. A marker for the end of adolescence // Curr. Biol. – 2004; 14 (24): R1038–9. DOI: 10.1016/j.cub.2004.11.039.
  43. Gradisar M., Gardner G., Dohnt H. Recent worldwide sleep patterns and problems during adolescence: a review and meta-analysis of age, region, and sleep // Sleep Med. – 2011; 12 (2): 110–8. DOI: 10.1016/j.sleep.2010.11.008.
  44. Jenni O., Achermann P., Carskadon M. Homeostatic sleep regulation in adolescents // Sleep. – 2005; 28 (11): 1446–54. DOI: 10.1093/sleep/28.11.1446.
  45. Keyes K., Maslowsky J., Hamilton A. et al. The great sleep recession: changes in sleep duration among US adolescents, 1991–2012 // Pediatrics. – 2015; 135 (3): 460–8. DOI: 10.1542/peds.2014-2707.
  46. Short M., Gradisar M., Wright H. et al. Time for bed: parent-set bedtimes associated with improved sleep and daytime functioning in adolescents // Sleep. – 2011; 34 (6): 797–800. DOI: 10.5665/SLEEP.1052.
  47. Cain N., Gradisar M. Electronic media use and sleep in school-aged children and adolescents: A review // Sleep Med. – 2010; 11 (8): 735–42. DOI: 10.1016/j.sleep.2010.02.006.
  48. Kel'manson I.A. Emotsional'nye rasstrojstva i rasstrojstva povedenija u detej, svjazannye s narushenijami sna // Ros. vestn. perinatol. i pediat. – 2014; 59 (4): 32–40 [Kelmanson I.A. Emotional and behavioral problems associated with sleep disorders in children // Ros. Vestn. Perinatol. i Pediat. (Russian Bulletin of Perinatology and Pediatrics). – 2014; 59 (4): 32–40 (in Russ.)].
  49. Jetha M. Adolescent brain development : implications for behavior. 1st ed. / Boston, MA: Elsevier, 2012.
  50. Eggermont S., Van den Bulck J. Nodding off or switching off? The use of popular media as a sleep aid in secondary-school children // J. Paediatr. Child Health. – 2006; 42 (7–8): 428–33.
  51. Thakre T., Deoras K., Griffin C. et al. Caffeine Awareness in Children: Insights from a Pilot Study. Journal of clinical sleep medicine // J. Clin. Sleep Med. – 2015; 11 (7): 741–6.
  52. Orbeta R., Overpeck M., Ramcharran D. et al. High caffeine intake in adolescents: associations with difficulty sleeping and feeling tired in the morning // J. Adolesc. Health. – 2006; 38 (4): 451–3. DOI: 10.1016/j.jadohealth.2005.05.014.
  53. Carskadon M. Sleep in adolescents: the perfect storm // Pediatr. Clin. North Am. – 2011; 58 (3): 637–47. DOI: 10.1016/j.pcl.2011.03.003.
  54. Wahlstrom K. Accommodating the sleep patterns of adolescents within current educational structures: an uncharted path. In: M. Carskadon, ed. Adolescent sleep patterns : biological, social, and psychological influences / Cambridge, New York: Cambridge University Press, 2002; p. 172–97.