A rational approach to solving cardiometabolic problems in the therapy of comorbid patients

DOI: https://doi.org/10.29296/25877305-2018-11-01
Download full text PDF
Issue: 
11
Year: 
2018

V. Shishkova(1), Candidate of Medical Sciences; L. Kapustina(2), Candidate of Medical Sciences 1-Center for Speech Pathology and Neurorehabilitation, Moscow 2-City Polyclinic Sixty-Nine, Moscow Healthcare Department

The paper considers the pathogenetic relationship of the development of ischemic complications in the most common vascular diseases, provides a detailed description of various defects in intracellular metabolism, and assesses the possibility of correcting these conditions. It details the full range of therapeutic effects of Mildronate for this category of patients.

Keywords: 
cardiology
cardiovascular diseases
cerebrovascular diseases
diabetes mellitus
metabolic syndrome
Mildronate



It appears your Web browser is not configured to display PDF files. Download adobe Acrobat или click here to download the PDF file.

References: 
  1. Zabolevaemost' naselenija Rossii v 2007 godu. Statisticheskie materialy / M., 2008.
  2. Boyd C. Clinical practice guidelines and quality of care for older patients with multiple comorbid diseases: implications for performance // JAMA. – 2005; 294 (6): 716–24.
  3. Caughey G., Vitry A., Cibert A. Prevalence of comorbidity of chronic diseases in Australia // BMC Public Health. – 2008; 8: 221.
  4. Allen C., Bayraktutan U. Oxidative stress and its role in the pathogenesis of ischaemic stroke // Int. J. Stroke. – 2009; 4 (6): 461–70.
  5. Silina E.V., Rumjantseva S.A., Bolevich S.B. i dr. Zakonomernosti techenija svobodnoradikal'nyh protsessov i prognoz ishemicheskogo i gemorragicheskogo insul'ta // Zhurn. nevrol. i psihiat. im. S.S. Korsakova. – 2011; 12 (2): 36–42.
  6. Rumjantseva S.A., Stupin V.A., Oganov R.G. i dr. Teorija i praktika lechenija bol'nyh s sosudistoj komorbidnost'ju. Klinicheskoe rukovodstvo / M., SPb: Mezhdunarodnaja izdatel'skaja gruppa «Meditsinskaja kniga», 2013; 360 s.
  7. Jaudzems K., Kuka J., Gutsaits A. et al. Inhibition of carnitineacetyltransferase by mildronate, a regulator of energy metabolism // J. Enzyme Inhib. Med. Chem. – 2009; 24 (6): 1269–75.
  8. Shishkova V.N. Komorbidnost' i poliprogmazija: fokus na tsitoprotektsiju // Consilium Medicum. – 2016; 18 (12): 65–71.
  9. Karpov R.S., Koshel'skaja O.A., Vrublevskij A.V. i dr. Klinicheskaja effektivnost' i bezopasnost' mildronata pri lechenii hronicheskoj serdechnoj nedostatochnosti u bol'nyh ishemicheskoj bolezn'ju serdtsa // Kardiologija. – 2000; 6: 69–74.
  10. Nedoshivin A.O., Petrova N.N., Kutuzova A.E. i dr. Kachestvo zhizni bol'nyh s hronicheskoj serdechnoj nedostatochnost'ju. Effekt lechenija mildronatom // Ter. arh. – 1999; 8: 10–2.
  11. Statsenko M.E., Turkina S.V., Belenkova S.V. i dr. Vlijanie mildronata v sostave kombinirovannoj terapii hronicheskoj serdechnoj nedostatochnosti u bol'nyh saharnym diabetom tipa 2 na uglevodnyj, lipidnyj obmen i pokazateli oksidativnogo stressa // Ros. kardiol. zhurn. – 2010; 2 (82): 45–51.
  12. Dzerve V., Matisone D., Pozdnyakov Y., et al. Mildronate improves the exercise tolerance in patients with stable angina: results of a long term clinicaltrial, Semin // Cardiovasc. Med. – 2010; 16: 8.
  13. Koeth R., Wang Z., Levison B. et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis // Nat. Med. – 2013; 19 (5): 576–85.
  14. Ussher J., Lopaschuk G., Arduini A. Gut microbiota metabolism of l-carnitine and cardiovascular risk // Atherosclerosis. – 2013; 231: 456–61.
  15. Tilg H. A Gut Feeling about Thrombosis // N. Engl. J. Med. – 2016; 374 (25): 2494–6.
  16. Shah P. Biomarkers of plaque instability // Curr. Cardiol. Rep. – 2014; 16 (12): 547.
  17. Liu Y., Huang Y. Elevated Trimethylamine-n-oxide Levels May Contributes to Progression of Cerebral Small Vessel Diseases in Poststroke Patients via Blood Brain Barrier Disruption // Circulation. – 2015; 132 (Suppl. 3): A18781–A18781.
  18. Ufnal M., Jazwiec R., Dadlez M. et al. Trimethylamine-N-oxide: a carnitinederived metabolite that prolongs the hypertensive effect of angiotensin II in rats // Canadian J. Cardiol. – 2014; 30 (12): 1700–5.
  19. Troseid M., Ueland T., Hov J. et al. Microbiota-dependent metabolite trimethylamine-N-oxide is associated with disease severity and survival of patients with chronic heart failure // J. Intern. Med. – 2015; 277 (6): 717–26.
  20. Suzuki T., Heaney L., Bhandari S. et al. Trimethylamine N-oxide and prognosis in acute heart failure // Heart. – 2016; 102 (11): 841–8.
  21. Tang W., Wang Z., Fan Y. et al.Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: refining the gut hypothesis // J. Am. Coll. Cardiol. – 2014; 64 (18): 1908–14.
  22. Tang W., Wang Z., Shrestha K. et al. Intestinal microbiota-dependent phosphatidylcholine metabolites, diastolic dysfunction, and adverse clinical outcomes in chronic systolic heart failure // J. Card. Fail. – 2015; 21 (2): 91–6.
  23. Randrianarisoa E., Lehn-Stefan A., Wang X. et al. Relationship of Serum Trimethylamine N -Oxide (TMAO) Levels with early Atherosclerosis in Humans // Sci. Rep. – 2016; 6: 26745.
  24. Kuka J., Liepinsh E., Makrecka-Kuka M. et al. Suppression of intestinal microbiota-dependent production of pro-atherogenic trimethylamine n-oxide by shifting l-carnitine microbialdegradation // Life Sci. – 2014; 117: 84–92.
  25. Dambrova M., Skapare-Makarova E., Konrade I. et al., Meldonium decreases the diet-increased plasma levels of trimethylamine n-oxide, a metabolite associated with atherosclerosis // J. Clin. Pharmacol. – 2013; 53: 1095–8.
  26. Makrecka M., Kuka J., Volska K. et al. Long-chain acylcarnitine content determines the pattern of energymetabolism in cardiac mitochondria // Mol. Cell. Biochem. – 2014; 395: 1–10.
  27. Schooneman M., Vaz F., Houten S. et al. Acylcarnitines: reflecting or inflicting insulin resistance // Diabetes. – 2013; 62: 1–8.
  28. Aguer C., McCoin C., Knotts T. et al. Acylcarnitines: potential implications for skeletal muscle insulinresistance // FASEB J. – 2015; 29: 336–45.
  29. Koves T., Ussher J., Noland R. et al. Mitochondrial overload and incomplete fatty acid oxidation contribute toskeletal muscle insulin resistance // Cell Metab. – 2008; 7: 45–56.
  30. Liepinsh E., Vilskersts R., Skapare E. et al. Mildronate decreases carnitine availability and up-regulates glucose uptake and related gene expression in the mouse heart // Life Sci. 2008; 83: 613–9.
  31. Kravchuk E.N., Galagudza M.M. Eksperimental'nye modeli metabolicheskogo sindroma // Arterial'naja gipertenzija. – 2014; 20 (5): 377–83.
  32. Degrace P., Demizieux L., Du Z. et al. Regulation of lipid flux between liver and adipose tissue during transient hepatic steatosis in carnitine-depleted rats // J. Biol. Chem. – 2007; 282: 20816–26.
  33. Liepinsh E., Vilskersts R., Zvejniece L. et al. Protective effects of mildronate in an experimental model of type 2 diabetesin goto-kakizaki rats // Br. J. Pharmacol. – 2009; 157: 1549–56.
  34. Sokolovska J., Isajevs S., Sugoka O. et al. Correction of glycaemia and GLUT1 level by mildronate in rat streptozotocindiabetes mellitus model // Cell Biochem. Funct. – 2011; 29: 55–63.
  35. Sokolovska J., Rumaks J., Karajeva N. et al. The influence of mildronate on peripheral neuropathy and somecharacteristics of glucose and lipid metabolism in rat streptozotocin-induceddiabetes mellitus model // Biomed. Khim. – 2011; 57: 490–500.
  36. Liepinsh E., Skapare E., Svalbe B. et al. Anti-diabetic effects of mildronate alone or in combination with metformin inobese zucker rats // Eur. J. Pharmacol. – 2011; 658: 277–83.
  37. Dambrova M., Makrecka-Kuka M., Vilskersts R. et al. Pharmacological effects of meldonium: Biochemical mechanisms and biomarkers of cardiometabolic activity // Pharmacological Research. – 2016; 113: 771–80.
  38. Logina I.P., Kalvin'sh I.Ja. Mildronat v nevrologii / Riga, 2012; 54 s.
  39. Shishkova V. An assessment of meldonium therapy effect on ciliary neurotrophic factor level in patients with post stroke aphasia and diabetes mellitus // Eur. Stroke J. – 2017; 2: 364–5.
  40. Maksimova M.Ju., Fedorova T.N., Sharypova T.N. Primenenie Mildronata v lechenii bol'nyh s narushenijami mozgovogo krovoobraschenija // Farmateka. – 2013; 9: 84–94.
  41. Maksimova M.Ju., Kistenev B.A., Domashenko M.A. i dr. Klinicheskaja effektivnost' i antioksidantnaja aktivnost' mildronata pri ishemicheskom insul'te // Ros. kardiol. zhurn. – 2009; 4 (78): 54–62.
  42. Shishkova V.N, Zotova L.I, Maljukova N.G. Vozmozhnost' povyshenija effektivnosti rannej kompleksnoj reabilitatsii u patsientov s postinsul'tnoj afaziej // Vrach. – 2018; 29 (6): 39–44.
  43. Kuzikov A.V., Bulko T.V., Masamreh R.A. i dr. Analiz vlijanija mel'donija na kataliticheskuju aktivnost' tsitohroma P450 3A4 // Vestnik RGMU. – 2016; 6: 10–5.